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Abstract
Magnetoconductance (MC) measurements have been performed on a 2140 Å
thick tungsten carbide film at temperatures very close to the superconducting
transition temperature Tc of the film. The data are dominated by
superconducting fluctuations. A novel three-dimensional phenomenological
model is proposed to explain the MC data, yielding good fits. The Larkin
beta factor, βLarkin, appeared as a fitting parameter. An expression proposed by
Larkin for βLarkin failed badly for temperatures extremely close to Tc. But at
intermediate and high temperatures compared to Tc, Larkin’s expression gave
very good agreement in fits to the MC data. At temperatures very close to
Tc, a crossover from three dimensions to two dimensions was observed in the
behaviour of the MC of the film.

1. Introduction

Superconducting fluctuations (SCFs) have been observed for over 45 years since the
pioneering experiments by Buchel and Hilsch [1] on amorphous bismuth films and later
by Shier and Ginsberg [2]. Superconducting fluctuation conductivity causes the ‘rounding’
of the resistance transition curve above the superconducting transition temperature Tc in high-
resistance thin films. Glover demonstrated that the SCF conductivity, also known as the
excess conductivity or paraconductivity, follows a Curie–Weiss-type law [3]. The rounding is
caused by fluctuations of the superconducting order parameter. Even above Tc, the fluctuations
create superconducting Cooper pairs of finite lifetime that contribute to the conductivity. The
Curie–Weiss-type conductivity law was derived microscopically by Aslamazov and Larkin
[4]. Many theoretical and experimental papers followed on the subject, focusing on the
two-dimensional (2D) aspects of the topic, including the early review papers by Glover [5]
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and Skocpol [6] and Tinkham’s book [7]. A particularly important experimental paper by
Serin et al [8] reported on magnetoconductance (MC) measurements made on thin (500 Å)
aluminium films. Both the theories and data for the zero-field conductivity and MC in two
dimensions are well understood.

In contrast to the 2D results, the experimental and theoretical publications in 3D
films and samples are limited, with the outstanding exception of studies of the high-
temperature superconductors [9, 10]. For example, there is no simple 3D expression for
magnetoconductivity using the Aslamazov–Larkin model when T is slightly greater than Tc

and there is no satisfactory 3D expression for the magnetoconductivity using the Maki–
Thompson model when T is considerably greater than Tc. Moreover, there is no prediction for
the novel scattering time in three dimensions when normal electrons scatter off the 3D SCF
regions, in contrast to the interesting 2D scattering formulation of Brenig et al [11, 12].

Probably the lack of theoretical interest results from the scarcity of published MC data
on bulk samples and thick films, and there are many reasons for this. The MC measurements
are nontrivial. First, most 3D metallic samples are thick and hence have very low resistances
in their normal state at liquid helium temperatures. Sensitive ac lock-in detection techniques
are required to measure the very small changes to zero resistance upon the approach to the
superconducting transition temperature. To enhance the normal resistance values, one tries to
use disordered alloys, but then one must worry that such samples have convenient Tc’s in the
liquid He4 and He3 temperature range. Generally, the Tc’s are depressed to lower temperatures
in such alloys. However, the most serious experimental problem is temperature stability
during the magnetic field sweeps. Temperature drifts of more than several millikelvin during
the sweeps will completely corrupt the MC data, with the temperature dependence of the
resistance dominating over the magnetic field dependence of the resistance. In addition, we
have been plagued with inhomogeneous samples that exhibit more than one superconducting
transition temperature upon their cooling down to the superconducting state. Note that we
define the MC in three dimensions as �σ = σ(B, T )− σ(0, T ) in units of (	 cm)−1.

In view of these experimental problems and challenges, there have been very few published
3D MC results on bulk samples. Almost all these data are taken at temperatures much greater
than Tc, where the weak localization (WL) contribution and to a lesser degree the electron–
electron interaction (EEI) contribution to the MC are as important or even more dominating
than the SCF contribution. The relevant MC papers include measurements on disordered
MgCuZn alloys by Meiners-Hagen and Gey [13], on disordered alloys of Ti–Al–(Sn, Co)
by Wu and Lin [14], on Mg–Zn metallic glasses by Richter et al [15] and on amorphous
Cu–Ti–Au alloys by Hickey et al [16].

The goal of this paper is to extend MC measurements on a ‘3D’ film as close as possible
to Tc and to interpret the data in terms of the Larkin beta prefactor, βLarkin.

2. The zero-field superconducting fluctuation conductivity

About 40 years ago, Aslamazov and Larkin (AL) calculated the influence of SCFs on electrical
conductivity above the superconducting transition temperature Tc [4, 17]. The AL contribution
results from the direct acceleration of the fluctuation-induced Cooper pairs above Tc. Close
to Tc for a 2D film, Aslamazov and Larkin obtained the zero-field Curie–Weiss-type law
expression for the conductivity:

σAL,2D(T ) = e2/[16h̄ ε(T )] = e2/[16h̄(T /Tc − 1)] (1)

where ε(T ) = ln(T /Tc) ≈ T/Tc − 1. In 2D, σ has units of (	/�)−1 and one often divides
the film conductivity by the film thickness d to compare the results in three dimensions. If
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one wishes to extend the temperature range of equation (1) considerably above Tc, then one
replaces ε(T ) = T/Tc − 1 by ln(T /Tc) [3, 18].

The 2D AL conductivity expression should be contrasted with the 3D zero-field
conductivity expression [3]:

σAL,3D(T ) = e2/{32h̄ ξ(0)[ε(T )]1/2} (2)

where ξ(0) = 0.85(ξBCSl)
1/2 is the zero-temperature coherence length that appears in the

Ginzburg–Landau superconductivity coherence length ξGL(T ) = ξ(T ) = ξ(0)/|ε(T )|1/2. l
is the elastic mean free path. Recall that ξBCS is the Bardeen–Cooper–Schrieffer (BCS)
coherence length given by ξBCS ≈ 0.18h̄ vF/kBTc [7].

The Aslamazov–Larkin theory provided excellent agreement with measurements on thin
amorphous films having high normal resistances per square. However, measurements on clean
Al films by the Brookhaven National Laboratory group and the University of Rochester group
showed SCF conductivity values to be much larger than the AL predictions [19–22]. Maki
suggested another contribution to explain this large conductivity [23]. The Maki–Thompson
(MT) contribution originates from the inertia of the superconducting pairs after decaying into
pairs of quasiparticles with opposite momenta. Since elastic scattering by impurity potentials
conserves time-reversal symmetry, these quasiparticle pairs continue to have nearly zero total
momentum and to produce excess conductivity. The quasiparticle pair lifetime is limited by
inelastic scattering, which breaks the quasiparticle pairs. Thus, the more disordered the film,
the shorter will be the lifetime and hence the less important becomes the MT contribution.
Thompson showed that the non-physical divergence in the 1D and 2D cases is prevented by
the presence of any pair-breaking effect such as magnetic impurities or a magnetic field [24].
For the case of three dimensions, the MT conductivity term takes the form [25]

σMT,3D(T ) = e2/{8h̄ ξ(0)[(ε(T ))1/2 + δ1/2]} (3)

where δ(T ) is the pair-breaking parameter given by [24–26]

δ(T ) = πh̄/[8kBT τin(T )] = πeDdifBin/(2kBT ). (4)

The MT contribution is important when the pair-breaking parameter δ(T) is small. This implies
that the inelastic scattering time τ in be large (weak scattering) or the inelastic field Bin be small
as is the case for clean films. The relation between the inelastic magnetic fields Bin’s extracted
from the MC data and the inelastic scattering times τ in’s is given by τin = h̄/(4eDdifBin),with
Ddif being the diffusion constant in units of m2 s−1.

Thus, the total 3D zero-field conductivity is given by the sum of the normal conductivity
σ normal,3D, the AL term and the MT term:

σ total,3D(T ) = σ normal,3D + σAL,3D(T ) + σMT,3D(T ). (5)

The small contributions from the weak localization and electron–electron interaction theories
have been neglected for temperatures close to Tc.

Note that if one uses units of (	 cm)−1 for the conductivity and magnetoconductivity
data, one must divide all the theoretical equations by a factor of 1/100 to convert from the unit
of m to cm. The 3D expressions are always in units of (	 m)−1.

3. Superconducting fluctuation magnetoconductivty in two dimensions

3.1. The 2D Aslamazov–Larkin MC theories

The magnetoconductance in two dimensions,�σAL,2D, for highly disordered films exhibiting
SCFs by the AL term was first derived by Abrahams, Prange and Stephen (APS) [28] . Using
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a microscopic calculation, Redi reconfirmed their expression [29]; we use Redi’s notation,
which differs slightly in the definition of the variable z used by APS:

�σAL,2D(B, T ) = σAL,2D(B = 0, T ){8z2[ψ(1/2 + z)− ψ(1 + z) + 1/(2z)] − 1} (6)

where σAL,2D(B = 0, T ) is the zero-field AL expression for conductivity, ψ is the digamma
function and z = BSCF/B. Useful formulae for approximating the digamma function can be
found in [30, 31]. Equation (6) has the desirable property that in the low-field limit, the MC
follows a quadratic field dependence given as

�σAL,2D(B → 0, T ) = −σAL,2D(B = 0, T )B2/
(
8B2

SCF

)
(7)

and at large fields the MC saturates at the value of

�σAL,2D(B → ∞, T ) = −σAL,2D(B = 0, T )[1 − 4BSCF/B]. (8)

If the high-field MC data saturate with a 1/B dependence, then this behaviour is useful in
identifying the dimensionality since in three dimensions, the MC saturates differently with a
1/B1/2 dependence. Many years ago Usadel first predicted this 1/B saturation dependence for
2D films [32]. This field dependence is useful since the zero-temperature coherence length
ξ (0) can be deduced from the ‘high’ field MC data knowing the value for BSCF.

According to Redi [29], the characteristic ‘superconducting fluctuation’ field, BSCF, is
defined as

BSCF = cε(T )kBT/(πeDdif) (9)

where ε(T ) = ln(T /Tc) ≈ T/Tc − 1 and c is a numerical factor. Redi suggested that
c = 2 [29], APS defined c ≈ 6 [28], Tinkham implied that c ≈ 3.4 from his definition of
Bc2 [7] and Bergmann [18] and Wiesmann et al [33] set c = 4 according to their expression
that defines Ddif from the slope values of dBc2/dT . We have fixed c = 3.4 throughout this
paper.

BSCF can also be expressed in terms of the Larkin beta factor βLarkin [34]: βLarkin appears
as a prefactor in the MT magnetoconductance expressions:

βLarkin = π2/{4 ln(T /Tc} T�Tc. (10)

For temperatures much greater than Tc, Larkin suggested [36]

βLarkin = π2/ {
6[ln(T /Tc)]

2} T 	 Tc. (11)

The characteristic field BSCF near Tc can be expressed in terms of βLarkin as

BSCF = cπkBT/(4eDdifβLarkin). (12)

But even more interestingly, BSCF can be reformulated in the following way, first suggested by
APS [28]:

BSCF = 0.78�0(T /Tc − 1)/{2π[ξ(0)]2}. (13)

Here �0 is the fluxoid equal to h/2e = 2.07 × 10−15 T m2. In this representation, BSCF has
almost the identical mathematical form that Bc2 has, since [7]

Bc2 = �0(1 − T/Tc)/{2π[ξ(0)]2}. (14)

Recall that Bc2 is the magnetic field that destroys superconductivity in the mixed state of a
type II superconductor below Tc. In analogy, BSCF is the magnetic field that destroys the SCF
regions above Tc, and BSCF acts as a ‘mirror image or reflection’ of Bc2 about the vertical axis
passing through Tc. In order to derive equation (14), we have used the following relations:
Ddif = vFl/3, ξBCS = 0.18h̄ vF/(kBTc) where Tc ≈ T , ξ(0) = (0.85ξBCSl)

1/2 and�0 = h/2e.
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Note that equation (14) is valid for temperatures slightly greater than Tc. We prefer using the
general expression given by equation (9) for BSCF.

Recalling that BSCF vanishes as T approaches Tc, we get the surprising result from
equation (7) that extremely small magnetic fields should be able to saturate the SCF
magnetoconductivity owing to theB2/B2

SCF dependence. This prediction was recently pointed
out by Meiners-Hagen and Gey [13]. This behaviour certainly works against our physical
intuition where one would postulate that the Cooper pairs would be more strongly bounded to
one another as the temperature approaches Tc and that stronger rather than weaker magnetic
fields would be required to quench the SCF regions.

3.2. The 2D Maki–Thompson MC theories

We now consider the 2D Maki–Thompson (MT) magnetoconductance. Important theoretical
work on the 2D Maki–Thompson MC was published by Larkin [34], who showed that values
for the inelastic magnetic fields, Bin’s, could be deduced from the MC data. Larkin suggested
the following expression for the MC [34]:

�σMT,2D(B, T ) = −(e2/2π2h̄)βLarkin{ψ(1/2 + Bin/B) + ln(B/Bin)} (15)

with βLarkin ≈ π2/[4 ln(T /Tc)]. Note the simplicity of the Larkin expression, involving only
one digamma function ψ and one ‘ln’ term. For small fields, equation (15) simplifies to

�σMT,2D(B → 0, T ) = −(e2/2π2h̄)βLarkinB
2/ (

24B2
in

)
. (16)

But in the high-field limit,�σMT,2D(B, T ) diverges owing to the ln(B) term. This prediction is
unphysical since at high fields the MC is finite and equal to the difference between the normal
conductivity value σ (B) and the finite zero-field conductivity value σ (0). Since the normal
conductivity σ (B) is generally much smaller than the large zero field conductivity arising from
the SCFs, the MC is negative and generally very large but finite close to Tc. Note that the
characteristic spin–orbit field, Bso, does not appear in the Larkin expression. The MT term will
not be affected by the spin–orbit scattering since this term is concerned with the singlet part
of the electron–electron interaction in the Cooper channel. Also, the effective spin–spin field,
Bs, does not appear in the Larkin expression for its presence would imply magnetic moments
which would ‘break up’ the Cooper pairs. The �σMT,2D contribution would be suppressed in
exactly the same way that the weak localization effects would be suppressed in the presence
of the magnetic spin–spin scattering.

The divergence problem in two dimensions was resolved by Lopes dos Santos and
Abrahams (LSA) [27], who suggested that the Larkin expression should be replaced by
the expression

�σMT,2D(B, T ) = −(e2/2π2h̄)βLSA{ψ(1/2 + Bin/B)− ψ(1/2 + BSCF/B)

+ ln(BSCF/Bin} (17)

where βLSA(T , δ) differs slightly from Larkin’s βLarkin, and is defined as

βLSA(T , δ) = π2/{4[ln(T /Tc)− δ]}. (18)

Here δ is the pair-breaking parameter given by equation (4).
Equation (17) has the desirable property that in the high field limit, the MC now saturates

at

�σMT,2D(B → ∞, T ) ≈ eπkBT/(8h̄ DdifB)− σMT,2D(B = 0, T ) or

�σMT,2D(B → ∞, T ) ≈ (π2/8cε)(e2/h̄)(BSCF/B)− σMT,2D(B = 0, T ) (19)
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and for the very small field limit,

�σMT,2D(B → 0, T ) ≈ [−e2βLarkin/(2π
2h̄)

]

× [{ln(T /Tc)− δ}/ ln(T /Tc)]
[
B2/(

24B2
in

)]
(20)

similar to the low field limit of equation (16).
A most important observation is that the LSA expression of equation (17) is simply the

difference between two Larkin MC expressions given by equation (15), with the first expression
having the inelastic field Bin appearing in the arguments of the digamma function and ‘ln’ term
while the second expression has the SCF field BSCF appearing in the arguments of the digamma
function and ‘ln’ term. We will use this observation for proposing a 3D MT expression.

4. Superconducting fluctuation magnetoconductivity theories in three dimensions

4.1. The 3D Aslamazov–Larkin MC theories

Usadel derived a complicated expression for the 3D AL case involving a summation of
digamma and trigamma functions in his equation (35) [32]. However, his expression for
�σAL,3D does saturate to −σAL,3D(0) in the limit of high fields with an additional small
but important positive contribution 1/B1/2 at moderately large fields [32]. His expressions
(equations (35), (22), (23) and (24)) are not easily adopted to fitting MC data [32].

Hikami and Larkin suggested an alternative 3D AL expression that involves a series that
includes the Bernoulli numbers [10]. Unfortunately this series converges slowly and poorly
owing to the slow convergence property of the Bernoulli numbers. In the small field limit
where B � BSCF, Usadel proposed [32] that

�σAL,3D(B → 0, T ) = −[
e2/(8h̄ ξ(0)ε5/2)

][
ξ(0)2B/�0

]2
. (21)

Hikami and Larkin derive an almost identical expression except that the ‘1/8’ term is
replaced by the factor ‘3π2/128’ [10]. Experimental constraints make the observation of
this B2 dependence of the MC most difficult since typical B’s are much less than 10 Gauss.
Temperature fluctuations, trapped flux in the superconducting magnet and also the Earth’s
magnetic field will all corrupt the very low field MC data.

Usadel has suggested the following high magnetic field limit for the 3D AL MC term
[32]:

�σAL,3D(B → ∞, T ) ≈ [0.24e2/h̄][BSCF/�0][1/ε3/2][h̄/eB]1/2 −σAL,3D(B = 0, T ). (22)

In this 3D case, the MC saturates as 1/B1/2, in contrast to the 1/B dependence in two
dimensions.

We see no simple intuitive way of ‘extending’ the 2D formulae of APS–Redi, namely
equation (6), to the 3D AL case.

4.2. The 3D Maki–Thompson MC theories and a novel phenomenological expression

For the MT case in three dimensions the theoretical situation is incomplete. Altshuler, Aronov,
Larkin and Khmel’nitskii (AALK) have suggested the following expression [35]:

�σMT,3D(B, T ) = −[e2/(2π2h̄)]βLarkin[eB/h̄]1/2f3(B/Bin). (23)

Note the interesting factor [eB/h̄]1/2 which is the inverse of the magnetic length, 1/lmag. A
length scale is required since the conductivity and magnetoconductivity in three dimensions
always have units involving an inverse length, namely (	 m)−1 or (	 cm)−1. Again, assuming
the absence of magnetic moments, the characteristic spin–orbit and spin–spin magnetic fields,
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Bso and Bs, do not enter into the argument of f3(x)—only Bin, the inelastic scattering field.
Baxter et al [36] have given a numerically convenient approximation for the f3(x) function,
which is accurate over the entire range of x and retains the correct asymptotic limits:

f3(x) = 2[2 + 1/x]1/2 − 2[1/x]1/2 − [1/2 + 1/x]−1/2

− [3/2 + 1/x]−1/2 + (1/48)[2.03 + 1/x]−3/2

f3(x → 0)→ (x3/2)/48

and

f3(x → ∞)→ 0.6049 − 2[1/x]1/2. (24)

Note at high fields, the MC is predicted to diverge as B1/2 since f3(x) saturates to 0.605
and the prefactor involving the inverse magnetic length [eB/h̄]1/2 dominates. As in the 2D
Larkin expression, this divergence is unphysical. One can fit equation (23) to the very low
field MC data but the fitting task is difficult since the two fitting parameters, βLarkin and Bin,
can take on a very wide range of values and physical insight must be used to limit their values
to realistic magnitudes.

Is it possible to postulate an expression for the 3D Maki–Thompson MC process? We
now present a phenomenological approach.

Recall that Lopes dos Santos and Abrahams solved the divergence MC problem in high
magnetic fields in two dimensions by proposing an expression involving the difference of two
Larkin expressions [27]. What happens if we ‘extend’ their 2D formulation to the 3D case by
taking the difference of two AALK expressions, namely the difference of two f3(x) functions as
follows:

�σMT,ext.3D(B, T ) = −[e2/(2π2h̄)]βLarkin[eB/h̄]1/2 [f3(B/Bin)− f3(B/BSCF)]. (25)

As extreme as this idea sounds, let us check the magnetic field limits of equation (25). For the
case of small magnetic fields,

�σMT,ext.3D(B → 0, T )

= −[e2/(2π2h̄)]βLarkin[eB/h̄]1/2 (1/48)
[
(B/Bin)

3/2 − (B/BSCF)
3/2

]
. (26)

As long as BSCF is considerably larger than Bin, equation (26) goes over to the low field
(B/Bin)

2 behaviour of the AALK expression and is well behaved.
In the opposite limit of high fields, one can use the asymptotic limit of f3(x) ≈

0.6049 − 2[1/x]1/2 to find the very surprising result:

�σMT,ext.3D(B → ∞, T ) = −[e2/(2π2h̄)]βLarkin2
[
(eBSCF/h̄)

1/2 − (eBin/h̄)
1/2

]
. (27)

Again as long as BSCF is considerably larger than Bin, equation (27) predicts a finite saturation
value for the MC at high fields and is well behaved. But we stress that equation (25) needs to
be put on firm theoretical grounds.

We denote equation (25) as the ‘extended 3D Lopes dos Santos–Abrahams theory’. There
are three fitting parameters in equation (25): the Larkin beta factor βLarkin, the inelastic field
Bin and the superconducting fluctuation field BSCF. If one accepts Larkin’s definition that
βLarkin = π2/[4ε(T )] = π2/[4 ln(T /Tc)], then BSCF can be expressed in terms of βLarkin

as BSCF = cπkBT/(4eDdifβLarkin), and hence there should be self-consistency between the
βLarkin values and the BSCF fitted values. To simplify the fitting procedure, we have set βLarkin

to Larkin’s theoretical prediction of βLarkin = π2/[4 ln(T /Tc)] and we have treated Bin and
BSCF as two free-fitting parameters in the MC expression of equation (25).

Recently, Meiners-Hagen and Gey have suggested a complicated expression for the 3D
MT MC term [13].

In conclusion, more theoretical work is certainly needed on the 3D SCF problem.
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5. Sample characterization and measurement techniques

The tungsten carbide (WC) films were supplied by Dr Ajit K Meikap and were fabricated by
ion-assisted deposition; a gas mixture of C2H2 and Ar in a ratio of 4/1 was used at 10−4 Torr.
Silver paint was used to attach electrical leads to the WC films. The WC film had a normal
resistance of 13.82 	 at liquid helium temperatures. The geometric factor of the WC film,
fg = 28.7 × 10−6 cm, was used to convert resistance to resistivity. The film thickness was
2140 Å.

Measurements were made by mounting the sample inside a pumped liquid helium probe.
The sample was positioned in the middle of a 7 T superconducting magnet. Temperature
stability was limited to ±3 mK using a Neocera LTC-11 or LTC-21 temperature controller.
Owing to the uncertainty in the zero field resistance magnitudes arising from temperature
instability, the fitting parameters are known for an accuracy of only ±25%. Unfortunately,
temperature stability was not good enough to observe the B2 dependence of the MC at very
low fields. However, when bad temperature drifts did occur, the MC run was repeated until
better quality data were obtained. The small magnitudes of resistances were measured using
a Linear Research ac bridge to an accuracy of ±1%. We used the smallest possible excitation
voltages (smallest currents) in order to minimize both the destruction of superconductivity in
the SCF regions and the Joule heating in the sample. Thus, a difficult compromise was made
between accuracy of the data and maximizing the superconductivity effect.

6. Results and analysis

The WC film had a Tc of approximately 3.949 K where the resistance vanished, as shown
in figure 1. This Tc was estimated by a linear extrapolation of the zero-field resistance
cool-down data. The SCF region extended above 7 K, with maximum resistance occurring
at 7 K. The maximum resistance results from a competition between the electron–electron
interactions (EEI) process which causes resistance to increase with decreasing temperatures,
in contrast to the SCF process that causes resistance to decrease to zero. Weak localization
(WL) also contributes to the ‘rounding’ behaviour. If there are strong spin–orbit interactions
as in our case, then there is an ‘anti-localization’ that causes a decrease of the resistance with
decreasing temperature. For weak spin–orbit interactions, the WL contributes an increase of
the resistance, along with the EEI contribution, with decreasing temperatures. These data
are compared to a fit (solid curve in figure 1) using the 3D equations (2)–(5). One fitting
parameter, the zero-temperature coherence length ξ (0) ≈ 75 Å, was used as well as values of
Bin extracted from the MC fits. Agreement is poor very close to Tc, but is quite acceptable
at higher temperatures. The disagreement probably arises from the use of the 3D expressions
solely rather than 2D expressions where a crossover in dimensionality takes place very close
to Tc. Hikami and Larkin suggested an AL crossover expression, their equation (2.6) in [10],
but this expression did not give a significant improvement.

A value for the diffusion constant Ddif is needed to evaluate BSCF in equation (9) and
in converting a characteristic magnetic field to a scattering time using the expression τx =
h̄/(4eDdifBx). Ddif was determined by cooling the film below Tc and measuring the magnetic
field Bc2, which restored the resistance to one-half of the normal resistance value. Figure 2
shows Bc2 data for the WC film. By using the expression Ddif = ckB/[πe(−dBc2/dT )]
with c = 3.4 (obtained by taking the temperature derivative of equation (9)), a value of
Ddif = 0.276 × 10−4 m2 s−1 was determined.
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Figure 1. The zero-field resistance data for the tungsten carbide film. The ‘rounding’ above 6 K
and drop in resistance results from a competition between the electron–electron interference and
between superconducting fluctuations and ‘anti-localization effects’, arising from a large spin–orbit
scattering field. The solid curve is a fit using equations (2)–(5) with ξ (0) = 75 Å . Very close to
Tc = 3.949 K, the agreement is poor.
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Figure 2. Bc2 values measured below Tc = 3.949 K for the WC film. The criterion used
for obtaining the Bc2’s was the one-half normal resistance method. The diffusion constant
Ddif = 0.276 × 10−4 m2 s−1 was extracted using the relation Ddif = 3.4kB/[πe(−dBc2/dT )].
The dashed line is a fit using equation (14) to Bc2 with ξ (0) = 47 Å. The BSCF data that appear
above Tc were obtained from fits to the MC data. The solid line is derived from equation (9).

Over the entire temperature range of 3.950 K � T � 8.00 K, the MC data are dominated
by the SCF contribution. The MC data are particularly interesting at temperatures very close
to Tc = 3.949 K.
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Figure 3. MC data taken at ‘high temperatures’ relative to Tc = 3.949 K. The MC values are
small and negative. The data can be nicely described by a relatively large contribution from the
‘extended 3D’ Lopes dos Santos–Abrahams SCF expression, equation (25) and a much smaller
contribution from the weak localization theory. The combined contributions are shown by the solid
curves.

For all the MC data taken at or above T = 3.975 K, we have used the ‘extended 3D’
equation (25) that contains the three fitting parameters, βLarkin, Bin and BSCF. In order
to simplify the fitting procedure, we assigned to βLarkin the theoretical Larkin prediction,
βLarkin = π2/[4 ln(T /Tc)]. We then fitted each set of MC data, varying the magnitudes of Bin

and BSCF;Bin determines the initial MC slope while BSCF fixes the saturation magnitude
of the MC. We then calculated an ‘experimental’ value for βLarkin using equation (12)
and the BSCF fitting magnitude. We observed surprisingly good self-consistency, with the
‘experimental’ βLarkin values being within a factor of 2 within the Larkin theoretical values.
The only exceptions were the three closest temperature points of 3.950, 3.955, and 3.960 K
where the Larkin expression for βLarkin badly underestimated the observed βLarkin values
derived from the BSCF values.

At the ‘highest’ temperatures of 5.0, 6.0 and 8.0 K, there is an additional small but
important MC contribution from the WL process. A useful summary of the 3D WL expressions
can be found in [37]. There are two fitting parameters in the WL expressions: Bin, that already
appears in the ‘extended 3D’ equation and Bso, the spin–orbit field. Owing to the heavy
nucleus of the tungsten atom, we have assigned a large value to Bso = 10 T. The fits are
shown in figure 3, where Bin takes a typical value of 0.6 T. Since the data were taken at
‘moderately’ small fields, no saturation trends were observed in the MC, and hence it was
difficult to determine accurate values for BSCF.

At ‘intermediate’ temperatures of 4.05, 4.10 and 4.25 K, only the ‘extended 3D’ equation
(25) was used since the WL contribution was negligible. Again the data exhibit no definite
trends to saturate as seen in figure 4, but values for both Bin and BSCF could be determined.
And there was consistency between the theoretical and experimental βLarkin values.

Data and fits at the four ‘low’ temperatures of 3.980, 3.990, 4.000 and 4.020 K are shown
in figure 5; agreement is very good. From the BSCF values, the zero-temperature coherence
length ξ (0) was estimated to be 75 Å. Again there is self-consistency between the theoretical
βLarkin values and the experimental values derived from BSCF.
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Figure 4. Fits to the MC data taken at ‘intermediate’ temperatures above Tc = 3.949 K. The weak
localization contribution is negligible and only the ‘extended 3D’ SCF expression of Lopes dos
Santos–Abrahams, equation (25), contributes as shown by the solid curves.
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Figure 5. Fits of the MC data taken at ‘low’ temperatures above Tc = 3.949 K. The tungsten
carbide film is still in the 3D regime and the ‘extended 3D’ Lopes dos Santos–Abrahams 3D
expression, given by equation (25), still fits the data nicely as shown by the solid curves. One of
the fitting parameters, Bin, was observed to tend to zero as the measuring temperatures approached
Tc, suggesting that equation (25) might not be valid very close to Tc.

At the ‘low’ temperature of T = 3.975 K, the saturation of the MC was again observed
as illustrated in figure 6. Here a comparison is made between the AALK theory, equation
(23), that shows no saturation property at high magnetic fields and the ‘extended 3D’ equation
(25) that exhibits saturation. The two different theoretical behaviours are striking. The three
fitting parameters in the ‘extended 3D’ expression are βLarkin = 376, Bin = 0.000 005 T and
BSCF = 0.03 T.
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The poorest fit, shown by the dashed-dotted curve, comes from the AALK expression of equation
(23). The best fit, represented by the solid curve, uses the ‘extended 3D’ expression of Lopes
dos Santos–Abrahams, equation (25). The fitting value for Bin was extremely small, 0.000 005 T
compared to BSCF = 0.037 T; and βLarkin = 376.
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Figure 7. MC data taken ‘just above’ Tc = 3.949 K. Note the extremely small fields required to
destroy the SCF regions, suggesting a crossover to the 2D regime. The fits, shown by the solid
curves, use the 2D formalisms of Abrahams, Prange and Stephen and of Redi according to equation
(6). The ‘extended 3D’ Lopes dos Santos–Abrahams expression, equation (25), breaks down in
this temperature range.

But the really fascinating and puzzling MC data for the WC film appear at temperatures
just above Tc as shown in figure 7. First, note the extremely small magnetic fields needed to
quench the SCFs. The other outstanding characteristic is the enormously large negative values
to which the MC saturates. These data do not closely resemble the behaviour of the higher
temperature data of figures 4–6.
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Figure 8. The dominating length scale lSCF = [τSCFDdif ]1/2 = [h̄/(4eBSCF)]1/2 as a function of
T /Tc. Note the rapid increase in magnitude of the characteristic length lSCF as T → Tc, owing to
BSCF → 0. At approximately 5 mK above Tc, this length exceeds the film thickness of 2140 Å,
causing a crossover from 3D to 2D behaviour as Tc is approached. Recall that this is a theoretical
prediction: the actual crossover is observed approximately 15 mK above Tc.

This anomalous behaviour suggests that there is a crossover from 3D to 2D behaviour.
Let us assume that the physical behaviour is controlled by the characteristic field BSCF rather
than the inelastic field Bin and that the dominating length scale is now lSCF = [τSCFDdif ]1/2 =
[h̄/4eBSCF]1/2 rather than the inelastic length scale lin = [h̄/4eBin]1/2

. . If lSCF now exceeds the
sample thickness d, then the 2D physics will dominate. A plot of lSCF versus T is shown in figure
8 usingDdif = 0.276 × 10−4 m2 s−1 for the WC film and equation (9) for BSCF. One observes
that for temperatures sufficiently close to Tc, the characteristic length lSCF indeed equals the
film thickness of 2140 Å. Thus, the 2D MC expressions of APS–Redi, namely equation (6),
should describe the data of figure 7. Such a 3D to 2D crossover was predicted by Serin et al
[8] and Abrahams and Woo [38] many years ago, but few people have paid attention to their
intriguing prediction. The fits in figure 7 use the 2D AL MC equation (6), with essentially one
fitting parameter, BSCF. The second fitting parameter, σA−L,2D(B = 0, T ), is known from the
zero-field resistance value. In principle, we should be using units of (	/�)−1; but we continue
to use the 3D units of (	 cm)−1 in figure 7. The fits are very good. According to Abraham
et al [28], Redi [29] and Usadel [32], the MC should saturate, including a small positive
contribution 1/B, for the 2D case, and this was indeed the behaviour observed. However,
Larkin’s expression for βLarkin = π2/[4 ln(T /Tc)] badly underestimates the experimental
βLarkin values deduced from the BSCF’s. No 2D MT contribution was included since equations
(17) and (18) behaved badly with the modified Larkin factor, βLarkin = π2/{4[ln(T /Tc)− δ]},
diverging and then changing sign as T → Tc.

Interestingly, Serin et al suggested that the crossover criterion be given by ξ(T ) ≈ d ,
where d is the sample thickness [8]. Within a numerical constant, their criterion is equivalent
to our criterion that [h̄/(4eBSCF)]1/2 ≈ d . Below Tc, ξ(T ) is interpreted as the coherence
length that describes the typical separation between the two oppositely spin-paired electrons
in the Cooper pair. Above Tc, ξ(T ) might be interpreted as the typical separation between
the two oppositely spin-paired electrons in the fluctuating Cooper pair or perhaps may be
interpreted as a typical linear size dimension of a SCF region.
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Figure 9. Experimental values for the inelastic scattering field Bin above Tc. Refer to the text for
arguments of why Bin might or might not tend to 0 at Tc.
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Figure 10. Magnitudes of the Larkin prefactor βLarkin extracted from the MC fits. The solid curve
is the Larkin prediction that βLarkin = π2/[4 ln(T /Tc)]. At temperatures very close to Tc, this
expression gives a very poor fit.

AboveT ≈ 3.960 K, we have a crossover region from two dimensions to three dimensions
where we are not aware of any theories. Thus, we have not presented the MC data at the
temperatures of 3.965 and 3.970 K, nor were we successful in fitting these data with any of
the above expressions.

Experimental values forBSCF are summarized in figure 2 and compared with the predicted
values according to equation (13) where ξ(0) = 47 Å was used. Experimental values
for Bin are shown in figure 9. Lastly, in figure 10 we compare the theoretical Larkin
βLarkin = π2/[4 ln(T /Tc)] values with the experimental values derived using equation (9)
and the BSCF fitted values. Agreement is surprisingly good as long as T� 1.005 Tc.
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7. Discussion

The ‘low’ temperature fits exhibited one very anomalous behaviour—namely that the values
for Bin tend to 0 as the temperatures approached Tc. We found this observation difficult
to accept, having been accustomed to fitting many sets of MC data taken on normal films.
From such fits using the weak localization expressions, one extracts the total dephasing
time τφ,total(T ) = [1/τ0 + 1/τin(T )]−1; here τ0 is the saturated temperature-independent
dephasing time and τin(T ) is the inelastic scattering time [39]. As Lin’s group has observed
in many metallic normal films, the total dephasing time tends to saturate to finite values
between 0.001 T and 0.02 T at very low temperatures [39]. Using their suggested observation
that (Ddifτ0)

1/2 ≈ 1000 Å [39], we would have anticipated Bφ,total ≈ B0 ≈ 0.018 T, for
example, several good orders of magnitude greater than our fitting value of Bin = 0.000 005 T
determined at the temperature of T = 3.975 K. However, accurate values for Bin cannot be
extracted from the very low temperature MC data owing to the dominating presence of the
saturated dephasing field B0 or τ0.

The problem might lie in the validity of the temperature ranges for both the 2D and 3D MT
expressions of Lopes dos Santos–Abrahams, equations (17) and (25). Recall that as T → Tc,
then BSCF → 0. The values for Bin must also approach 0 since the conditionBSCF > Bin must
be satisfied for these equations to be meaningful. Maybe, these expressions might become
invalid very close to Tc for some other physical reason, and hence the fitting values for Bin as
well as BSCF might not be physical for T → Tc. Most likely, the values for Bin are meaningful
if the second crossover condition is satisfied, namely lin = (h̄/4eDdifBin)

1/2 < d or Bin >

0.008 T. This criterion is meet for T � 1.01Tc or for our measuring temperatures of T �
3.99 K.

From the theoretical viewpoint we must remember that our films become superconductive,
consisting of SCF regions above Tc where normal electrons have condensed into Cooper pairs.
As the transition temperature is approached, there could be numerous and extensive SCF
regions, and hence many fewer normal electrons to participate in inelastic scattering events.
Thus, this argument suggests that owing to the scarcity of normal electrons available to
participate in inelastic scattering events, the inelastic scattering time approaches infinity, or
that Bin approaches 0 as T → Tc. But, there is also a strong counterargument too. There
are indeed SCF regions but only a few in number. We now have a percolation picture where
these regions become connected as T → Tc, finally forming one continuous superconducting
path across the sample. In this model, there are only relatively few SCF regions, and hence
only a few Cooper pairs formed from condensation of a relatively few normal electrons.
This argument describes a two-component model consisting of many normal electrons and
a limited number of Cooper pairs. Hence this picture most likely predicts a finite inelastic
electron scattering time and therefore a finite Bin as T → Tc. There is no clear theoretical
consensus on whether Bin remains finite or 0 as T → Tc.

We hope that some of the above-mentioned problems and theoretical questions will
stimulate further experimental and theoretical work.
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